Spek, A. L. (1983). Proc. 8th Eur. Crystallogr. Meeting, Belgium. Wiegers, G. A. \& Meerschaut, A. (1992). In Incommensurate Sandwiched Layered Compounds, edited by A. MeersChaut, pp. 101-172. Trans. Tech. Pub.
Wiegers, G. A., Meetsma, A., van Smafen, S., Hange, R. J. \& de Boer, J. L. (1990). Solid State Commun. 75, 689-692.

Wiegers, G. A., Meetsma, A., van Smaalen, S., Haange, R. J., Wulff, J., Zeinstra, T., de Boer, J. L., Kuypers, S., van Tendeloo, G., van Landuyt, J., Amelinckx, S., Meerschaut, A., Rabu, P. \& Rouxel, J. (1989). Solid State Commun. 70, 409-413.

Zhou, W. Y., Meetsma, A., de Boer, J. L. \& Wiegers, G. A. (1992). Mat. Res. Bull. 27, 563-572.

Acta Cryst. (1995). B51, 287-293

Structure of Potassium Sulfate at Temperatures From 296 K Down to 15 K

By Kenil Ojima, Yasuo Nishihata and Akikatsu Sawada
Faculty of Science, Okayama University, Okayama 700, Japan
(Received 18 July 1994; accepted 18 November 1994)

Abstract

The crystal structure of potassium sulfate, $\mathrm{K}_{2} \mathrm{SO}_{4}$, was studied at five temperatures from 296 down to 15 K using an off-center four-circle diffractometer. The temperature dependence of lattice constants is well explained by the Grüneisen relation. The crystal structure is confirmed to be orthorhombic, space group Pmcn, down to 15 K . The $\mathrm{S}-\mathrm{O}$ bond lengths in SO_{4} tetrahedra with thermal motion correction are almost independent of temperature. Atomic positions of $\mathrm{K}(1), \mathrm{K}(2)$ and S atoms in the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure are found to approach the special positions in the $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure as temperature increases. No evidence for any phase transition has been detected below room temperature.

Introduction

Many compounds of $A_{2} B X_{4}$-type crystals have the β $\mathrm{K}_{2} \mathrm{SO}_{4}$-type structure and some of these compounds have interesting features. For example, ammonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, shows ferrielectric temperature dependence on spontaneous polarization (Unruh, 1970). Potassium selenate, $\mathrm{K}_{2} \mathrm{SeO}_{4}$, transforms into an incommensurately modulated phase (Iizumi, Axe \& Shirane, 1977). Tetramethylammonium tetrabromocobaltate and tetramethylammonium tetrabromozincate, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{XBr}_{4}(\mathrm{X}=\mathrm{Zn}, \mathrm{Co})$, show ferrielastic temperature dependence on monoclinic angle deviation from 90° below T_{c} (Hasebe, Mashiyama, Tanisaki \& Gesi, 1984; Sawada, Tanaka, Matsumoto \& Nishihata, 1995). Potassium sulfate, $\mathrm{K}_{2} \mathrm{SO}_{4}$, is the most fundamental crystal among the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$-type crystals. Lattice constants and positional parameters at room temperature were reported by Robinson (1958) and later refined by McGinnety (1972). This crystal undergoes a firstorder phase transition from the β - (orthorhombic, space group Pmen) to the $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure (hexagonal, space group $P 6_{3} / m m c$) at high temperature. El-Kabbany
(1980) reported a hysteresis with a transition temperature of 844 K on heating and 839 K on cooling. Hightemperature study of the structure has been reported by van den Berg \& Tuinstra (1978), Miyake, Morikawa \& Iwai (1980), and Arnold, Kurtz, Richter-Zinnius, Bethke \& Heger (1981). On the other hand, it was suggested from measurements of specific heat and dielectric constants that $\mathrm{K}_{2} \mathrm{SO}_{4}$ might undergo another phase transition at 56 K (Gesi, Tominaga \& Urabe, 1982). The crystal structure of potassium sulfate below room temperature has not yet been reported.

The purpose of the present work is to study the crystal structure of potassium sulfate by single-crystal X-ray diffraction in the temperature range from room temperature down to 15 K . In particular, we examine whether such a phase transition really occurs.

Experiment

Single crystals of potassium sulfate were grown by slow evaporation of an aqueous solution. Integrated intensity data were measured using an off-center-type four-circle diffractometer with a χ-cradle of inner diameter 400 mm (Huber Eulerian cradle model 512), installed in the X-ray Laboratory of Okayama University. Graphite monochromatized Mo $K \alpha$ radiation was used. The shape and size of the crystal used during the experiments was spherical, diameter $0.298(2) \mathrm{mm}$ at 296,50 and 15 K and $0.265(2) \mathrm{mm}$ at 200 and 100 K . The specimen attached to a sapphire rod was cooled by a closedcycle helium gas refrigerator which was mounted on the φ-circle of the diffractometer. The temperature was measured by a thermocouple, $\mathrm{Au}(\mathrm{Fe})$-chromel, attached on the supporting rod apart from the specimen by $c a$ 1.5 mm . Temperature stability during the experiments was within ± 0.5 at 296,50 and 15 K , and also within ± 1.0 at 200 and 100 K . Lattice parameters were refined

Table 1. Crystallographic data and experimental details

Crystal data
Temperature (K)
Crystal system
Space group
$a(\AA)$
$b(\AA)$
$c(\AA)$
Z
Density ($\mathrm{g} \mathrm{cm}^{-3}$)
Radiation
Wavelength (\AA)
2θ range for latice parameters (${ }^{\circ}$)
Absorption coefficient (mm^{-1})
Crystal shape
Crysta size (diameter in mm)
Data collection
Scan type
No. of reflections measured
No. of independent reflections
No. of observed reflections
Criterion for observed reflections
h
h
k
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$
No. of standard reflections (and interval)
Variation of standards (\%)
Values of extinction correction

Refinement

R
S
No. of parameters refined
No. of reflections used in refinement
Weighting scheme
$(\Delta / \sigma)_{\text {max }}$
$(\Delta \rho)_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$
$(\Delta \rho)_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

296	200
Orthorhombic	Orthorhombic
Pmin	Pmen
5.7704 (3)	5.7503 (4)
10.0712 (9)	10.0395 (6)
7.4776 (4)	7.4513 (7)
434.56 (5)	430.16 (5)
4	4
2.66	2.69
Mo $K \alpha_{1}$	Mo $K \alpha_{1}$
0.70926	0.70926
75-80	73-78
2.49	2.51
Sphere	Sphere
0.298 (2)	0.265 (2)
$2 \theta-\theta$	$2 \theta-\theta$
3144	2563
1714	1442
1448	1228
$F>3 \sigma(F)$	$F>3 \sigma(F)$
0-10	-10-10
0-19	0-17
-14-14	0-13
80	78
3 (200)	3 (200)
1	1
1.72×10^{-5}	2.04×10^{-5}

0.036	0.029
0.725	0.652
41	41
1429	1202
1	1
0.0314	-0.0385
1.22	0.60
-0.97	-0.85

100
Orthorhombic
$P m c n$
$5.7303(6)$
$10.010(1)$
$7.4291(6)$
$426.14(7)$
4
2.72
Mo K
0.70926
$73-78$
2.53
Sphere
$0.265(2)$
$22-\theta$
2533
1420
1233
$F>3 \sigma(F)$
$-10-10$
$0-17$
$0-13$
78
$3(200)$
1
1.97×10^{-5}
50
Ortorhombic
$P m c n$
$5.7224(5)$
$10.000(1)$
$7.4226(6)$
$424.73(7)$
4
2.73
$M 0 \alpha_{1}$
0.70926
73.78
2.54
Sphere
$0.265(2)$
15
Orthorhombic
Pmcn
5.7226

Pmcn
5.7226 (4)
9.9985 (4)
7.4218 (4)
424.66 (4) 7.426
4
2.73 2.73 Mo $K \alpha_{1}$
070926 0.70926
$75-80$
2.54 Sphere
0.298 (2)

$2 \theta-\theta$	$2 \theta-\theta$
2525	2880
1395	1530
1257	1391
$F>3 \sigma(F)$	$F>3 \sigma(F)$
$-10-10$	$0-10$
$0-17$	$0-18$
$-13-0$	$-13-13$
78	80
$3(200)$	$3(200)$
1	1
1.91×10^{-5}	2.00×10^{-5}

0.029
0.785
41
1202
1
-0.0492
0.79
-1.09

0.022	0.025
0.590	0.665
41	41
1207	1369
1	1
-0.0303	0.0525
0.71	0.69
-0.91	-1.06

using 25 measured reflections ($73 \leq 2 \theta \leq 80^{\circ}$). Up to $\sin \theta / \lambda=0.8855 \AA^{-1}$ the intensities were measured in the $2 \theta-\theta$ scan mode throughout the temperature region. Scan width is defined by $\Delta \theta=1.3+0.5 \tan \theta$ and the scan speed $6^{\circ} \mathrm{min}^{-1}$. Three standard reflections which were monitored every 200 reflections were observed to check the stability of measurements so that no significant variation was detected. The data were collected for two octants of the orthorhombic reciprocal space. Other experimental details and crystal data are summarized in Table 1.

Lorentz and polarization corrections were made. Absorption correction was made by numerical integration, although $\mu r \simeq 0.38$ was small. Several reflections were omitted at all temperatures because these reflections seem to be affected by the superimposition of the reflections from the sapphire rod. Extinction conditions were checked upon all data at each temperature, and few unsystematic reflections to infringe the extinction conditions were measured.

The space group and setting of the crystal axes were assigned to Pmcn. The structure was refined by a block-diagonal least-squares matrix on structure factor F, using the program AXS89 system which was rewritten
from UNICSII by Mashiyama (1991).* A personal computer (NEC PC-9821 Ap) was used for the calculation. The function minimized in the refinement was $\sum\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum\left|F_{o}\right|^{2}$. Atomic scattering factors for neutral atoms and anomalous dispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The structure at 296 K was refined starting from the parameters at room temperature given by McGinnety (1972). Reflection data sets at the other temperatures were refined starting from the parameters at 296 K in this work. Atomic and thermal parameters were refined using reflections with $F_{o}>3 \sigma\left(F_{o}\right)$. For all reflection data sets, 19 reflections were removed because these reflections seem to be affected very strongly by the extinction effect. At the final stage of refinement an isotropic extinction correction was made (Pinnock, Taylor and Lipson, 1956). The values of the extinction coefficient are also shown in Table 1. The R values converged at $2.2 \sim 3.6 \%$. The crystal structure was found to be orthorhombic, space group Pmcn, at a

[^0]temperature below 296 K. A final difference Fourier synthesis revealed no peak higher than $1.22 \mathrm{e} \AA^{-3}$ throughout the temperature region investigated in this work. Other parameters are also shown in Table 1.

Results and discussion

The temperature dependence of lattice constants along the a-, b - and c-axes is shown in Fig. 1(a). Lattice constants a, b and c at 15 K contract $c a 0.8 \%$ compared with those at room temperature. The temperature dependence of the unit-cell volume is shown in Fig. $1(b)$. In order to explain the temperature dependence of the unit-cell volume, we calculate the unit-cell volume $V(T)$ using the Grüneisen relation

$$
\begin{equation*}
V(T)=V_{0}+\kappa \gamma \epsilon\left(\theta_{D} / T\right) \tag{1}
\end{equation*}
$$

where V_{0} is the value of the unit-cell volume at $0 \mathrm{~K}, \kappa$ the compressibility, and γ the Grüneisen constant (Cochran,

Fig. 1. Temperature dependence of (a) lattice constants a, b and c, and (b) unit-cell volume V in potassium sulfate. Solid lines are the calculated values based on the Grüneisen relation.
1973). The final term $\epsilon\left(\theta_{D} / T\right)$ is defined as

$$
\begin{equation*}
\epsilon\left(\theta_{D} / T\right)=9 n k_{B} T\left(T / \theta_{D}\right) \int_{0}^{\theta_{D} / T}\left[x^{3} /\left(e^{x}-1\right)\right] \mathrm{d} x \tag{2}
\end{equation*}
$$

where θ_{D} is the Debye temperature, n the number of atoms in the unit cell, and k_{B} Boltzmann's constant. Adams \& Gibson (1931) reported $\kappa=3.208 \times 10^{-8} \mathrm{~Pa}$ at 293 K . Here, V_{0}, γ and θ_{D} are fitting parameters. The Grüneisen constant γ is estimated to be 1.30. The Debye temperature and the unit-cell volume at 0 K are determined to be $\theta_{D}=277 \mathrm{~K}$ and $V_{0}=424.60 \AA^{3}$. The solid line in Fig. $1(b)$ is the calculated unit-cell volume using (1). It is seen that the temperature dependence of the unit-cell volume is well explained by the Grüneisen relation throughout the temperature region investigated in the present work. In order to explain the temperature dependence of the lattice constants, we apply the Grüneisen relation to the case of the lattice constants

$$
\begin{equation*}
a_{j}(T)=a_{0 j}+A_{j} \epsilon\left(\theta_{D} / T\right) \tag{3}
\end{equation*}
$$

where $a_{0 j}$ is the lattice constant at 0 K and A_{j} ($j=1,2,3$) a proportional constant for each axis. The Debye temperature θ_{D} is regarded as the same value, obtained from (1), because it is a value peculiar to bulk. The lattice constant $a_{0 j}$ at 0 K and A_{j} are determined to be $a_{01}=5.7224$, $a_{02}=9.9985, a_{03}=7.4211 \AA$ and $A_{1}=2.0397 \times 10^{7}$, $A_{2}=3.0663 \times 10^{7}, A_{3}=2.3458 \times 10^{7} \AA \mathrm{~J}^{-1}$. Solid lines in Fig. 1(a) are the calculated values of each axis by (3). As the result of calculation, the temperature dependence of the lattice constants is also well explained by the Grüneisen relation. There is no anomaly for the temperature dependence of the unit-cell volume and the lattice constants.

Final atomic and anisotropic thermal parameters are listed in Table 2. Projections of the structure along the a - and c-axes at 296 and 15 K are shown in Fig. 2. The atomic parameters are satisfied with the symmetry of Pmen throughout the temperature region. We found that the atomic parameters of $\mathrm{K}(1), \mathrm{K}(2)$ and S move towards the specified directions as temperature decreases. In order to compare the $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure with the β $\mathrm{K}_{2} \mathrm{SO}_{4}$ structure, a common unit cell is used, i.e. the orthohexagonal unit cell. The orthohexagonal unit cell, with a_{o}, b_{o}, c_{o}, is obtained from the hexagonal basis vector a_{h}, b_{h}, c_{h} by $a_{o}=a_{h}, b_{o}=a_{h}+2 b_{h}, c_{o}=$ c_{h}. Fractional atomic coordinates in the present work (x, y, z) are also transformed into ($x-\frac{1}{4}, y+\frac{1}{4}, z+\frac{1}{2}$) for K and ($x-\frac{1}{4}, \bar{y}+\frac{3}{4}, z$) for S. Fractional atomic coordinates at high temperatures from neutron diffraction measurements (Arnold et al., 1981) and those at low temperatures from the present X-ray work are shown in Table 3. The temperature dependence of the shifts of the fractional atomic coordinates Δy and Δz for $\mathrm{K}(2)$ in the $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure from the atomic position in the

Table 2. Fractional atomic coordinates and anisotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{e q}=(1 / 3) \sum_{i} U_{i i} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

The form of the anisotropic thermal ellipsoid is $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)\right]$. (a)

	x	y	z	$U_{\text {eq }}$
296 K				
K(1)	0.25	0.08935 (6)	0.17398 (7)	0.01769 (10)
K(2)	0.25	0.79550 (5)	0.48915 (7)	0.01554 (9)
S	0.25	0.41985 (5)	0.23295 (7)	0.00993 (9)
O(1)	0.25	0.4162 (3)	0.0368 (3)	0.0263 (5)
$\mathrm{O}(2)$	0.25	0.5585 (2)	0.2976 (3)	0.0195 (4)
$\mathrm{O}(3)$	0.0412 (3)	0.3522 (2)	0.3017 (2)	0.0222 (3)
200 K				
K(1)	0.25	0.08941 (4)	0.17280 (5)	0.01111 (7)
K(2)	0.25	0.79627 (4)	0.48904 (5)	0.00964 (7)
S	0.25	0.41993 (4)	0.23271 (6)	0.00590 (7)
$\mathrm{O}(1)$	0.25	0.4171 (2)	0.0360 (2)	0.0164 (3)
$\mathrm{O}(2)$	0.25	0.5591 (1)	0.2981 (2)	0.0123 (3)
$\mathrm{O}(3)$	0.0406 (2)	0.3520 (1)	0.3015 (2)	0.0141 (2)
100 K				
K(1)	0.25	0.08940 (4)	0.17176 (6)	0.00595 (7)
K(2)	0.25	0.79701 (4)	0.48888 (5)	0.00520 (7)
S	0.25	0.41998 (5)	0.23253 (6)	0.00319 (8)
O(1)	0.25	0.4174 (2)	0.0346 (2)	0.0094 (3)
O(2)	0.25	0.5596 (2)	0.2986 (2)	0.0069 (3)
$\mathrm{O}(3)$	0.0394 (2)	0.3519 (1)	0.3018 (2)	0.0076 (2)
50 K				
K(1)	0.25	0.08941 (3)	0.17138 (4)	0.00390 (5)
K(2)	0.25	0.79729 (3)	0.48885 (4)	0.00339 (5)
S	0.25	0.42003 (3)	0.23262 (4)	0.00208 (6)
O(1)	0.25	0.4171 (1)	0.0342 (1)	0.0060 (2)
O(2)	0.25	0.5601 (1)	0.2991 (2)	0.0049 (2)
$\mathrm{O}(3)$	0.0390 (1)	0.3515 (1)	0.3021 (1)	0.0052 (1)
15 K				
K(1)	0.25	0.08942 (3)	0.17137 (4)	0.00324 (5)
K(2)	0.25	0.79729 (3)	0.48881 (4)	0.00282 (5)
S	0.25	0.42002 (3)	0.23263 (5)	0.00151 (6)
O(1)	0.25	0.4170 (1)	0.0341 (2)	0.0052 (2)
O(2)	0.25	0.5601 (1)	0.2990 (2)	0.0043 (2)
O(3)	0.0386 (1)	0.3516 (1)	0.3020 (1)	0.0045 (1)

(b)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
296 K						
K(1)	0.0169 (2)	0.0197 (2)	0.0164 (2)	0	0	0.0006 (2)
K(2)	0.0185 (2)	0.0150 (1)	0.0132 (1)	0	0	-0.0005 (1)
S	0.0101 (1)	0.0095 (1)	0.0101 (1)	0	0	-0.0005 (1)
$\mathrm{O}(1)$	0.0382 (11)	0.0318 (10)	0.0089 (5)	0	0	-0.0019 (7)
$\mathrm{O}(2)$	0.0254 (8)	0.0120 (6)	0.0210 (7)	0	0	-0.0044 (5)
$\mathrm{O}(3)$	0.0140 (4)	0.0227 (5)	0.0298 (6)	-0.0063 (4)	0.0032 (5)	0.0052 (5)
200 K						
K(1)	0.0106 (1)	0.0123 (1)	0.0104 (1)	0	0	0.0008 (1)
K(2)	0.0117 (1)	0.0089 (1)	0.0082 (1)	0	0	-0.0001 (1)
S	0.0059 (1)	0.0056 (1)	0.0061 (1)	0	0	-0.0001 (1)
$\mathrm{O}(1)$	0.0245 (7)	0.0189 (6)	0.0057 (4)	0	0	-0.0010 (5)
$\mathrm{O}(2)$	0.0166 (6)	0.0065 (4)	0.0138 (5)	0	0	-0.0035 (4)
$\mathrm{O}(3)$	0.0090 (3)	0.0146 (4)	0.0186 (4)	-0.00042 (3)	0.0021 (3)	0.0037 (3)
100 K						
K(1)	0.0060 (1)	0.0066 (1)	0.0053 (1)	0	0	0.0005 (1)
K(2)	0.0066 (1)	0.0049 (1)	0.0041 (1)	0	0	0.0001 (1)
S	0.0037 (1)	0.0030 (1)	0.0028 (1)	0	0	0.0000 (1)
$\mathrm{O}(1)$	0.0148 (6)	0.0112 (5)	0.0023 (4)	0	0	0.0001 (5)
$\mathrm{O}(2)$	0.0105 (5)	0.0033 (4)	0.0070 (5)	0	0	-0.0019 (4)
$\mathrm{O}(3)$	0.0050 (3)	0.0082 (3)	0.0096 (4)	-0.0025 (3)	0.0008 (3)	0.0020 (3)
50 K						
K(1)	0.0038 (1)	0.0043 (1)	0.0036 (1)	0	0	0.0002 (1)

Table 2 (cont.)

(b)						
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
K(2)	0.0041 (1)	0.0033 (1)	0.0028 (1)	0	0	0.0000 (1)
S	0.0021 (1)	0.0020 (1)	0.0021 (1)	0	0	0.0000 (1)
$\mathrm{O}(1)$	0.0088 (4)	0.0077 (4)	0.0015 (3)	0	0	0.0004 (3)
$\mathrm{O}(2)$	0.0062 (4)	0.0029 (3)	0.0055 (3)	0	0	-0.0012 (3)
$\mathrm{O}(3)$	0.0034 (2)	0.0059 (2)	0.0062 (2)	-0.0018 (2)	0.0009 (2)	0.0013 (2)
15 K						
K(1)	0.00337 (9)	0.00338 (8)	0.00297 (8)	0	0	0.00017 (8)
K(2)	0.00372 (9)	0.00259 (8)	0.00214 (8)	0	0	-0.00004 (7)
S	0.00193 (10)	0.00124 (9)	0.00137 (9)	0	0	-0.00010 (9)
O(1)	0.0080 (4)	0.0065 (4)	0.0012 (3)	0	0	0.0006 (3)
$\mathrm{O}(2)$	0.0063 (4)	0.0022 (3)	0.0044 (3)	0	0	-0.0011 (3)
O(3)	0.0030 (2)	0.0052 (2)	0.0055 (2)	-0.0016 (2)	0.0011 (2)	0.0011 (2)

$\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure is shown in Fig. 3. Here ($\Delta x, \Delta y$, Δz) is defined as

$$
\begin{equation*}
(\Delta x, \Delta y, \Delta z)=(x, y, z)-(x, y, z)_{\alpha} \tag{4}
\end{equation*}
$$

Both Δy and Δz show discontinuous changes at T_{c}, gradual changes below room temperature, and saturate around 0 K . As temperature increases, the atomic positions of $K(1), K(2)$ and S approach $\left(0, \frac{1}{3}, \frac{3}{4}\right),(0,0,0)$ and ($0, \frac{1}{3}, \frac{1}{4}$), respectively, which are the special positions in the orthohexagonal unit cell. Miyake et al. (1980) have reported that close to the phase transition temperature, SO_{4} tetrahedra jump from one state to another, and an order parameter is the orientation probability of SO_{4} tetrahedra. In the high-temperature phase, S is located on a mirror plane normal to the c-axis. Therefore, the shift
of the S atom from the special position in the $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure is concerned with the order parameter and the shift of K is related to a change in the configuration of neighboring SO_{4} tetrahedra. It is noted that although the order parameter is almost equal to one below room temperature, the shifts of these atoms gradually increase as temperature decreases down to 15 K .

The SO_{4} tetrahedron is almost regular throughout the temperature region investigated in the present work. The temperature dependence of interatomic distances and angles is listed in Table 4. The $\mathrm{S}-\mathrm{O}$ bond lengths in SO_{4} tetrahedra were corrected by thermal motion, using the rigid-body vibration model for SO_{4} tetrahedra (Cruickshank, 1956a,b). We conclude that the S-O bond lengths in SO_{4} tetrahedra do not change as temper-

Fig. 2. Projection of the structure of potassium sulfate along the a - and c-axes at (a) 296 and (b) 15 K . Atoms are represented by 90% probability ellipsoids.

Table 3. Comparison between the fractional atomic coordinates of $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ and those of $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$

* Data from Arnold et al. (1981).
ature changes. Interatomic distances $\mathrm{S}-\mathrm{K}(i)$ decrease as temperature decreases. The angle $\mathrm{O}(i)-\mathrm{S}-\mathrm{O}(j)$ ranges from 108.68 to 110.55° at $15 \mathrm{~K}\left(109.47^{\circ}\right.$ for the regular tetrahedra).

As shown in Figs. 2(a) and (b), the thermal vibration of $\mathrm{O}(1)$ is very anisotropic compared with those of $\mathrm{O}(2)$ and $O(3)$. The thermal ellipsoid of $O(1)$ becomes flatter as temperature decreases. It is noted in Table 2 that the off-diagonal component U_{23} in $\mathrm{O}(1)$ gradually increases as temperature decreases. As seen in the projection along the a-axis in Fig. 2, the thermal ellipsoid of $\mathrm{O}(1)$ rotates around the a-axis in an anticlockwise direction as temperature decreases.

The mean square amplitude $\left\langle u_{j}^{2}\right\rangle$ of vibration of atom j is evaluated as an equivalent isotropic thermal factor $U_{\text {eq }}$, as shown in Table 2. The temperature dependence of $<u_{j}^{2}>$ for $S, K(2)$ and $O(2)$ is shown in Fig. 4. Mean square amplitudes $\left\langle u_{j}^{2}\right\rangle$ for $\mathrm{S}, \mathrm{K}(2)$ and $\mathrm{O}(2)$ decrease monotonously as temperature decreases. The S atom has the smallest vibration among all atoms, because the S atom is located in the center of the SO_{4} tetrahedron and the vibration of the S atom is restricted by surrounding O atoms. The temperature dependence of the mean square amplitude $<u_{j}^{2}>$ is given by

Fig. 3. Temperature dependence of shifts Δy and Δz of the $\mathrm{K}(2)$ atom along the b - and c-axis in $\beta-\mathrm{K}_{2} \mathrm{SO}_{4}$ from the position in $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$: (\bullet) present work; (\diamond) neutron diffraction by Arnold et al. (1981).

Table 4. Interatomic distances (\AA) and angles (${ }^{\circ}$)
Bond lengths of $\mathrm{S}-\mathrm{O}$ in SO_{4} tetrahedra have been corrected by thermal motion. Interatomic distances of $\mathrm{S}-\mathrm{K}$ are the shortest. $\mathrm{O}\left(3^{\prime}\right)$ corresponds to the atom obtained from $\mathrm{O}(3)$ atom by the mirror plane at $x=0.25$.

296 K		$\begin{array}{ll} & \mathrm{S}-\mathrm{O}(1) \\ \mathrm{d} & 1.467(2) \end{array}$) $\mathrm{S}-\mathrm{O}(2)$	$S-O(3)$
	Uncorrected) 1.478 (2)	1.477 (2)
	Corrected	d 1.475	1.485	1.484
200 K	Uncorrected	d $1.466{ }^{(2)}$ d) 1.480 (2)	1.476 (1)
	Corrected		1.485	1.481
100 K	Uncorrected	- 1.471 (2)) 1.481 (2)	1.478 (1)
	Corrected	1.475	1.485	1.482
50 K	Uncorrected	- 1.473 (1)) 1.485 (1)	1.481 (1)
	Corrected	1.476	1.487	1.484
15 K	Uncorrected Corrected	1.474 (1)) 1.485 (1)	1.482 (1)
		1.476	1.487	1.485
		S-K(1)	S -K(2)	
	296 K	3.2991 (8)	3.5568 (4)	
	200 K	3.2806 (7)	3.5409 (4)	
	100 K	3.2644 (7)	3.5256 (4)	
	50 K	3.2581 (5)	3.5207 (3)	
	15 K	3.2576 (5)	2.5205 (3)	
	$\mathrm{O}(1)-\mathrm{O}(2)$	$\mathrm{O}(1)-\mathrm{O}(3)$	$\mathrm{O}(2)-\mathrm{O}(3)$	$\mathrm{O}(3)-\mathrm{O}\left(3^{\prime}\right)$
296 K	2.420 (3)	2.407 (2)	2.402 (2)	2.410 (2)
200 K	2.419 (2)	2.407 (2)	2.403 (2)	2.409 (2)
100 K	2.424 (2)	2.414 (2)	2.405 (2)	2.414 (2)
50 K	2.431 (2)	2.417 (1)	2.410 (1)	2.415 (1)
15 K	2.431 (2)	2.418 (1)	2.410 (1)	2.419 (1)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2) \mathrm{O}(1)-\mathrm{S}-\mathrm{O}(3) \mathrm{O}(2)-\mathrm{S}-\mathrm{O}(3) \mathrm{O}(3)-\mathrm{S}-\mathrm{O}\left(3^{\prime}\right)$				
296 K	110.55 (6) 109	109.67 (5) 1	108.79 (4)	109.35 (5)
200 K	110.37 (5) 109	109.75 (3) 108	108.79 (3)	109.35 (4)
100 K	110.36 (5) 109	109.85 (3) 108	108.66 (3)	109.43 (4)
50 K	110.54 (3) 109	109.81 (2) 108	108.70 (2)	109.26 (3)
15 K	110.55 (3) 10	109.74 (3) 108	108.68 (2)	109.41 (3)

Fig. 4. Temperature dependence of mean square amplitude $\left\langle u_{j}^{2}\right\rangle$. Solid lines are the calculated values from (5).
where B_{j} and C_{j} are constant (Noda, Kasatani, Watanabe \& Terauchi, 1992). B_{j} for $\mathrm{S}, \mathrm{K}(2)$ and $\mathrm{O}(2)$ is calculated, $B_{S}=1.446 \times 10^{-3}, B_{K}=2.709 \times 10^{-3}$, $B_{O}=4.142 \times 10^{-3} \AA^{2}$ and also C_{j} for these atoms, $C_{S}=6.272 \times 10^{-22}, C_{K}=7.593 \times 10^{-22}, C_{O}=9.087$ $\times 10^{-22} \mathrm{~J}$. The solid lines in Fig. 4 are the calculated values from (5). The mean square amplitude $\left\langle u_{j}^{2}\right\rangle$ at 0 K refers to the zero-point motion. The temperature dependence of the mean square amplitude $\left\langle u_{j}^{2}\right\rangle$ is explained by (5) throughout the temperature region investigated in the present work. No anomaly is seen for the temperature dependence of the mean square amplitude $\left\langle u_{j}^{2}\right\rangle$.

Concluding remarks

The crystal structure of potassium sulfate was investigated at temperatures from 296 down to 15 K , using a four-circle diffractometer. Throughout the temperature region investigated in the present work, the crystal structure is found to be orthorhombic, space group Pmen. Unit-cell volume and lattice constants decrease monotonously as temperature decreases. The temperature dependence of the unit-cell volume and the lattice constants is explained by the Grüneisen relation. Atomic positions of $\mathrm{K}(1), \mathrm{K}(2)$ and S move to the special position of the $\alpha-\mathrm{K}_{2} \mathrm{SO}_{4}$ structure as temperature increases. The $\mathrm{S}-\mathrm{O}$ bond lengths in SO_{4} tetrahedra do not alter as temperature changes. The temperature dependence of mean square amplitude $\left\langle u_{j}^{2}\right\rangle$ decreases monotonously as temperature decreases and is explained by (5). Both
the unit-cell volume and the mean square amplitude $<u_{j}^{2}>$ show no anomaly to indicate a phase transition below room temperature.

The authors thank Mr Y. Kitamura for the growth of single crystals. We are also indebted to Professor H . Mashiyama at Yamaguchi University for his kind offer of the program AXS89 system.

References

Adams, L. H. \& Gibson, u. R. E. (1931). J. Wash. Acad. 21, 381-390. Arnold, H., Kurtz, W., Richter-Zinnius, A., Bethke, J. \& Heger, G. (1981). Acta Cryst. B37, 1643-1651.

Berg, A. J. van den \& Tulnstra, F. (1978). Acta Cryst. B34, 3177-3181. Cochran, W. (1973). The Dynamics of Atoms in Crystals. London: Edward Arnold Ltd.
Cruickshank, D. W. J. (1956a). Acta Cryst. 9, 754-756.
Cruickshank, D. W. J. (1956b). Acta Cryst. 9, 757-758.
El-Kabbany, F. A. I. (1980). Phys. Status Solidi A, 58, 373-378.
Gesi, K., Tominaga, Y. \& Urabe, H. (1982). Ferroelectr. Lett. 44, 71-75.
Hasebe, K., Mashiyama, H., Tanisaki, S. \& Gesi, K. (1984). J. Phys. Soc. Jpn, 53, 1866-1868.
Llzumi, M., Axe, J. D. \& Shirane, G. (1977). Phys. Rev. B, 15, 4392-4411.
Mashiyama, H. (1991). J. Phys. Soc. Jpn, 60, 180-187.
McGinnety, J. A. (1972). Acta Cryst. B28, 2845-2852.
Miyake, M., Morikawa, H. \& Iwai, S. (1980). Acta Cryst. B36, 532-536.
Noda, Y., Kasatan, H., Watanabe, Y. \& Terauchi, H. (1992). J. Phys. Soc. Jpn, 61, 905-915.
Pinnock, P. R., Taylor, C. A. \& Lipson, H. (1956). Acta Cryst. 9, 173-178.
Robinson, M. T. (1958). J. Phys. Chem. 62, 925-928.
Sawada, A., Tanaka, K., Matsumoto, H. \& Nishihata, Y. (1995). Ferroelectrics. To be published.
Unruh, H. G. (1970). Solid State Commun. 8, 1951-1954.

Two 9,10-Anthracenocryptand Silver(I) Nitrate Complexes. Fluorescence Modulated by $\mathbf{A g}^{+}$as a Function of the Geometry of the Complex

By H. Andrianatoandro, Y. Barrans and P. Marsau
Laboratoire de cristallographie et Physique cristalline, URA 144 CNRS, Université de Bordeaux I, 33405 Talence CEDEX, France

and J. P. Desvergne, F. Fages and H. Bouas-Laurent
Laboratoire de Photophysique et Photochimie Moléculaire, URA 348 CNRS, Université de Bordeaux I, 33405 Talence CEDEX, France
(Received 17 January 1994; accepted 12 October 1994)

Abstract

The two anthracenocryptands 3,12-octano-3,12-diaza-$6,9,31,34$-tetraoxa $[14](9,10)$ anthracenophane, $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \quad\left(A_{22}\right)$, and 4,13-octano-4,13-diaza-7,10,33,36-tetraoxa[6](9,10) anthracenophane,

$\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}\left(A_{33}\right)$, were designed to direct interactions between π-electrons and Ag^{+}. In each complex displaying $1: 1$ stoichiometry, Ag^{+}is encapsulated in the cavity of the cryptand and coordinated to O and N atoms of the diaza-crown ether. In $\left(A_{22}\right) / \mathrm{Ag}^{+}$, complex (I), Ag_{\circ}^{+}lies at a Ag^{+}-anthracene mean plane distance of $3.01 \AA$. Two

[^0]: *A list of structure factors has been deposited with the IUCr (Reference: OH0048). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

